Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.

Identifieur interne : 000152 ( Main/Exploration ); précédent : 000151; suivant : 000153

Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.

Auteurs : Bruno Manta [Uruguay] ; Matías N. Möller ; Mariana Bonilla [Uruguay] ; Matías Deambrosi [Uruguay] ; Karin Grunberg [Uruguay] ; Massimo Bellanda [Italie] ; Marcelo A. Comini [Uruguay] ; Gerardo Ferrer-Sueta [Uruguay]

Source :

RBID : pubmed:30593501

Descripteurs français

English descriptors

Abstract

Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.

DOI: 10.1074/jbc.RA118.006366
PubMed: 30593501
PubMed Central: PMC6398122


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.</title>
<author>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Moller, Matias N" sort="Moller, Matias N" uniqKey="Moller M" first="Matías N" last="Möller">Matías N. Möller</name>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bonilla, Mariana" sort="Bonilla, Mariana" uniqKey="Bonilla M" first="Mariana" last="Bonilla">Mariana Bonilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deambrosi, Matias" sort="Deambrosi, Matias" uniqKey="Deambrosi M" first="Matías" last="Deambrosi">Matías Deambrosi</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grunberg, Karin" sort="Grunberg, Karin" uniqKey="Grunberg K" first="Karin" last="Grunberg">Karin Grunberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
<affiliation wicri:level="4">
<nlm:affiliation>the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrer Sueta, Gerardo" sort="Ferrer Sueta, Gerardo" uniqKey="Ferrer Sueta G" first="Gerardo" last="Ferrer-Sueta">Gerardo Ferrer-Sueta</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and gferrer@fcien.edu.uy.</nlm:affiliation>
<country wicri:rule="url">Uruguay</country>
</affiliation>
<affiliation>
<nlm:affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30593501</idno>
<idno type="pmid">30593501</idno>
<idno type="doi">10.1074/jbc.RA118.006366</idno>
<idno type="pmc">PMC6398122</idno>
<idno type="wicri:Area/Main/Corpus">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000180</idno>
<idno type="wicri:Area/Main/Curation">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000180</idno>
<idno type="wicri:Area/Main/Exploration">000180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.</title>
<author>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Moller, Matias N" sort="Moller, Matias N" uniqKey="Moller M" first="Matías N" last="Möller">Matías N. Möller</name>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bonilla, Mariana" sort="Bonilla, Mariana" uniqKey="Bonilla M" first="Mariana" last="Bonilla">Mariana Bonilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deambrosi, Matias" sort="Deambrosi, Matias" uniqKey="Deambrosi M" first="Matías" last="Deambrosi">Matías Deambrosi</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grunberg, Karin" sort="Grunberg, Karin" uniqKey="Grunberg K" first="Karin" last="Grunberg">Karin Grunberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Laboratorio de Fisicoquímica Biológica and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
<affiliation wicri:level="4">
<nlm:affiliation>the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400</wicri:regionArea>
<wicri:noRegion>Montevideo 11400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrer Sueta, Gerardo" sort="Ferrer Sueta, Gerardo" uniqKey="Ferrer Sueta G" first="Gerardo" last="Ferrer-Sueta">Gerardo Ferrer-Sueta</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Laboratorio de Fisicoquímica Biológica and gferrer@fcien.edu.uy.</nlm:affiliation>
<country wicri:rule="url">Uruguay</country>
</affiliation>
<affiliation>
<nlm:affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Trypanosoma (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Thiols (métabolisme)</term>
<term>Trypanosoma (métabolisme)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trypanosoma</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Thiols</term>
<term>Trypanosoma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Catalytic Domain</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)
<sub>2</sub>
). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)
<sub>2</sub>
, most of its functions are replaced by T(SH)
<sub>2</sub>
in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)
<sub>2</sub>
instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)
<sub>2</sub>
is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (
<i>k</i>
> 5 × 10
<sup>5</sup>
m
<sup>-1</sup>
s
<sup>-1</sup>
). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)
<sub>2</sub>
(4.8 × 10
<sup>6</sup>
m
<sup>-1</sup>
s
<sup>-1</sup>
); however, GSH-mediated reduction was extremely slow (39 m
<sup>-1</sup>
s
<sup>-1</sup>
). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)
<sub>2</sub>
in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30593501</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.</ArticleTitle>
<Pagination>
<MedlinePgn>3235-3248</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.006366</ELocationID>
<Abstract>
<AbstractText>Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)
<sub>2</sub>
). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)
<sub>2</sub>
, most of its functions are replaced by T(SH)
<sub>2</sub>
in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)
<sub>2</sub>
instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)
<sub>2</sub>
is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (
<i>k</i>
> 5 × 10
<sup>5</sup>
m
<sup>-1</sup>
s
<sup>-1</sup>
). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)
<sub>2</sub>
(4.8 × 10
<sup>6</sup>
m
<sup>-1</sup>
s
<sup>-1</sup>
); however, GSH-mediated reduction was extremely slow (39 m
<sup>-1</sup>
s
<sup>-1</sup>
). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)
<sub>2</sub>
in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.</AbstractText>
<CopyrightInformation>© 2019 Manta et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Manta</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Laboratorio de Fisicoquímica Biológica and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Möller</LastName>
<ForeName>Matías N</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>the Laboratorio de Fisicoquímica Biológica and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bonilla</LastName>
<ForeName>Mariana</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Laboratorio de Fisicoquímica Biológica and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deambrosi</LastName>
<ForeName>Matías</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grunberg</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Laboratorio de Fisicoquímica Biológica and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bellanda</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-8187-0264</Identifier>
<AffiliationInfo>
<Affiliation>the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Comini</LastName>
<ForeName>Marcelo A</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">0000-0001-5000-1333</Identifier>
<AffiliationInfo>
<Affiliation>From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrer-Sueta</LastName>
<ForeName>Gerardo</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0002-8663-8480</Identifier>
<AffiliationInfo>
<Affiliation>the Laboratorio de Fisicoquímica Biológica and gferrer@fcien.edu.uy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2MYG</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014345" MajorTopicYN="N">Trypanosoma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">disulfide</Keyword>
<Keyword MajorTopicYN="Y">enzyme catalysis</Keyword>
<Keyword MajorTopicYN="Y">fluorescence</Keyword>
<Keyword MajorTopicYN="Y">glutathionylation</Keyword>
<Keyword MajorTopicYN="Y">oxidation-reduction (redox)</Keyword>
<Keyword MajorTopicYN="Y">thiol</Keyword>
<Keyword MajorTopicYN="Y">trypanosome</Keyword>
<Keyword MajorTopicYN="Y">trypanothione</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30593501</ArticleId>
<ArticleId IdType="pii">RA118.006366</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.006366</ArticleId>
<ArticleId IdType="pmc">PMC6398122</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2001 Jan 26;291(5504):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 2;49(4):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19968277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1850(2):263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25450181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Jun;146(3):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7016827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Sep 25;254(18):9113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">39074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2015 Dec;204(2):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26854591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8678-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 May 18;1249(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Sep 1;310 ( Pt 2):433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7654179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;359:353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jan 1;16(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Apr 18;45(15):4785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16605247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1982;87:405-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7176924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 15;402(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2005 Dec;33(4):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Aug;1794(8):1218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):445-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Apr 23;449(2-3):196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jan 25;443(2):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 09;7:42343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28181556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Sep 20;27(9):517-533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;251:8-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Feb 21;45(7):2362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1968 Apr 25;243(8):1942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5646485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 6;276(14):10602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 18;4:518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1970 Mar 16;7(1):26-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11947421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):35224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22753509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2018 Sep;285(17):3225-3237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30028086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):665-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1993 Oct;9(5):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8293329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1991 Aug;2(4):287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1821800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1955 Dec;217(2):867-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13271447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23127894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jun 3;584(11):2242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):4959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21051543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2016 Apr;10(1):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26386962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Oct 6;583(19):3215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 17;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):708-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Mar 16;287(12):8792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22275351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Sep 30;53(38):6113-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):487-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28372502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1967 Mar;119(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6052434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 May 15;262(14):6704-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3571279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):463-486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29048199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 04;8:14835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28374771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1959 Nov 13;130(3385):1319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14407111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7875-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 17;277(20):17548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2014 Feb;23(2):238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Mar 9;133(9):3034-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1924337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 26;34(51):16770-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 May;15:532-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29413965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>Uruguay</li>
</country>
<region>
<li>Vénétie</li>
</region>
<settlement>
<li>Padoue</li>
</settlement>
<orgName>
<li>Université de Padoue</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Moller, Matias N" sort="Moller, Matias N" uniqKey="Moller M" first="Matías N" last="Möller">Matías N. Möller</name>
</noCountry>
<country name="Uruguay">
<noRegion>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
</noRegion>
<name sortKey="Bonilla, Mariana" sort="Bonilla, Mariana" uniqKey="Bonilla M" first="Mariana" last="Bonilla">Mariana Bonilla</name>
<name sortKey="Bonilla, Mariana" sort="Bonilla, Mariana" uniqKey="Bonilla M" first="Mariana" last="Bonilla">Mariana Bonilla</name>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<name sortKey="Deambrosi, Matias" sort="Deambrosi, Matias" uniqKey="Deambrosi M" first="Matías" last="Deambrosi">Matías Deambrosi</name>
<name sortKey="Deambrosi, Matias" sort="Deambrosi, Matias" uniqKey="Deambrosi M" first="Matías" last="Deambrosi">Matías Deambrosi</name>
<name sortKey="Ferrer Sueta, Gerardo" sort="Ferrer Sueta, Gerardo" uniqKey="Ferrer Sueta G" first="Gerardo" last="Ferrer-Sueta">Gerardo Ferrer-Sueta</name>
<name sortKey="Grunberg, Karin" sort="Grunberg, Karin" uniqKey="Grunberg K" first="Karin" last="Grunberg">Karin Grunberg</name>
</country>
<country name="Italie">
<region name="Vénétie">
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30593501
   |texte=   Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30593501" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020